Что такое форкамера в дизельном двигателе
Перейти к содержимому

Что такое форкамера в дизельном двигателе

  • автор:

Применение форкамерно-факельного воспламенения в дизельных двигателях Текст научной статьи по специальности «Механика и машиностроение»

Аннотация научной статьи по механике и машиностроению, автор научной работы — Шевченко П. Л., Ширлин И. И., Шевченко С. И.

Дизельные двигатели с разделенными камерами сгорания и предкамерным смесеобразованием имеют существенный недостаток повышенный удельный расход топлива, связанный со значительными потерями энергии на гидравлическое сопротивление в соединительном канале предкамеры и полости цилиндра. Применение форкамерно-факельного воспламенения позволит устранить этот недостаток и объединить достоинства разделенных и не разделенных камер сгорания .

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Шевченко П. Л., Ширлин И. И., Шевченко С. И.

Влияние разделённых и полуразделённых камер сгорания на рабочий процесс дизеля при использовании альтернативных видов топлива

Пути совершенствования рабочего процесса в двигателях внутреннего сгорания
Способы организации рабочего процесса газодизельного двигателя
Исследование по выбору неразделенной камеры сгорания дизеля ваз-341

Теоретическое определение оптимальных конструктивных параметров камеры сгорания судового малоразмерного дизеля

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Применение форкамерно-факельного воспламенения в дизельных двигателях»

ПРИМЕНЕНИЕ ФОРКАМЕРНО-ФАКЕЛЬНОГО ВОСПЛАМЕНЕНИЯ В

П.Л. Шевченко, канд. техн. наук., проф.,

И.И. Ширлин, канд. техн. наук., С.И. Шевченко, аспирант Сибирская государственная автомобильно-дорожная академия (СибАДИ)

Аннотация. Дизельные двигатели с разделенными камерами сгорания и предкамер-ным смесеобразованием имеют существенный недостаток — повышенный удельный расход топлива, связанный со значительными потерями энергии на гидравлическое сопротивление в соединительном канале предкамеры и полости цилиндра. Применение форкамерно-факельного воспламенения позволит устранить этот недостаток и объединить достоинства разделенных и не разделенных камер сгорания.

Ключевые слова: двигатели, дизели, воспламенение, камера сгорания

Среди достоинств дизельных двигателей особенно важным является высокий эффективный коэффициент полезного действия, что выражается в высокой экономичности, пониженной токсичности отработавших газов в сравнении с бензиновыми двигателями. Из недостатков следует отметить повышенную жесткость работы двигателя, особенно при снижении температуры окружающего воздуха и снижении цетанового числа топлива, что вызывает повышенные нагрузки в деталях кривошипно-шатунного механизма двигателя и негативно сказывается на надежности и долговечности двигателя в целом. Причиной этого является увеличение периода задержки воспламенения в рабочем процессе. Описание и постановка задачи Продолжительность периода задержки воспламенения в основном зависит от температуры воздушного заряда в зоне впрыска топлива. Зависимость периода задержки воспламенения от температуры воздушного заряда можно выразить следующим образом [1]:

где А — постоянный коэффициент; е — основание натурального логарифма; Е — энергия активации; Т — температура воздушного заряда.

На основе представленного выражения можно утверждать, что повышение температуры воздушного заряда на 10% вызывает сокращение задержки воспламенение на 12-15%.

Однако, повышение температуры свежего заряда возможно до определенного уровня, который определяется наполнением цилин-

рабочий процесс, форкамерно-факельное

дра. В этой связи подогревать воздушный заряд на впуске в цилиндр выше 35-40 К нецелесообразно, так как это ведет к снижению коэффициента наполнения цилиндра [2].

Поэтому необходимо подогревать заряд непосредственно в цилиндре двигателя. В этом случае удается сократить период задержки воспламенения и сохранить наполнение цилиндра двигателя, не снижая эффективной мощности и не увеличивая расхода топлива.

Повышения температуры воздушного заряда в камере сгорания для сокращения периода задержки воспламенения добиваются обычно следующими способами:

— модернизация конструкции камеры сгорания (применение предкамерного и вихрекамерного смесеобразования);

— использование свечей накаливания, жаропрочных вставок, различных экранов и т.п.

Однако, указанные способы имеют недостатки, связанные со сложностями конструктивных решений и низкой эффективностью для решения поставленных задач.

Другим способом снижения периода задержки воспламенения, за счет создания благоприятных условий для воспламенения топливовоздушной смеси, является форкамерно-факельное воспламенение.

Такой способ позволяет значительно увеличить температуру рабочей смеси в самой форкамере, а, стало быть, снизить период задержки воспламенения.

С этой целью на кафедре «Теплотехника и тепловые двигатели» Сибирской автомобильнодорожной академии была разработана система

форкамерно-факельного воспламенения для дизелей с неразделенной камерой сгорания. Эти двигатели, обладая высокой экономичностью, большой литровой мощностью и хорошими пусковыми качествами, характеризуются высокой жесткостью работы. Применение форкамерно-факельного воспламенения позволит снизить отрицательное влияние повышенной жесткости работы двигателя за счет снижения периода задержки воспламенения.

Для реализации данной идеи была разработана конструкция форкамеры. Устройство располагается в днище поршня, ее объем не превышает 7-8% объема основной камеры сгорания и в нее подается только около 10% топлива.

В результате предполагается значительно сократить задержку воспламенения непосредственно в форкамере, и реализовать ступенчатое воспламенение всего заряда, поскольку воспламенение смеси в форкамере инициирует воспламенение смеси по всему объему камеры сгорания.

При работе двигателя температура стенок форкамеры, а, следовательно, и внутри ее, будет значительно выше температуры в основной камере, так как теплопроводность жаропрочной стали гораздо ниже теплопроводности материала поршня, и, кроме того, возможна теплоизоляция форкамеры [3].

В конце такта сжатия воздух с большой скоростью поступает в форкамеру и увлекает за собой топливо, поступающее из отверстия распылителя, расположенного против соединительного канала форкамеры.

Благодаря высокой температуре в форкамере топливо воспламеняется с очень малым периодом задержки воспламенения. Продукты сгорания, имеющие высокую температуру, вырываются в основную камеру сгорания через четыре отверстия, расположенные по окружности фор-камеры и через соединительный канал против распылителя. Это способствует быстрому воспламенению основной порции топлива и равномерному его распределению по объему основной камеры сгорания. При такой организации рабочего процесса обеспечивается снижение периода задержки воспламенения основной порции топлива и мягкая работа двигателя.

Благодаря равномерному распределению топлива по объему камеры сгорания, улучшается полнота сгорания топлива, более полно будет использован избыток воздуха. Это позволит осуществить нормальную работу двигателя при пониженном значении коэффициента избытка воздуха и даст возможность увеличить мощность двигателя.

Более полное сгорание топлива будет способствовать снижению токсичности отработавших газов. Кроме того, будут понижены требования к цетановому числу топлива.

Сокращение периода задержки воспламенения дает возможность форсировать двигатель по частоте вращения коленчатого вала без повышения степени сжатия, что позволит относительно просто увеличить литровую мощность двигателя, а стало быть, снизить удельную массу и габариты дизеля.

Эффективный коэффициент полезного действия будет больше, чем у предкамерных и вихрекамерных двигателей, так как поверхность камеры сгорания меньше, а поэтому тепловые потери в охлаждающую жидкость меньше.

Кроме того, гидравлические потери при перетекании рабочего тела практически отсутствуют. Благодаря более полному сгоранию топлива и минимальному увеличению тепловых и гидравлических потерь экономичность двигателя будет выше.

Пусковые качества двигателя при низких температурах будут такими же, как у однокамерных двигателей.

1. Семенов В.И. Исследование индикаторного периода задержки воспламенения быстроходного многотопливного дизеля с камерой в поршне. Изв. вузов. — М.: «Машиностроение», № 1, МВТУ, 1970.

2. Свиридов Ю.Б. Смесеобразование и сгорание в дизелях. Л.: Машиностроение, 1972. — 223 с.

3. Розенблит Г.Б. Теплопередача в дизелях. — М.: Машиностроение, 1977. — 216 с.

Applying a pre-combustion pilot-flame ignition in diesel engines

P.L. Shevchenko, I.I. Shirlin,

Diesel engines equipped with divided combustion chambers and prechamber carburetion have advantages, as well as one considerable disadvantage -high fuel rate in comparison with diesel engines equipped with nondivided combustion chambers. This drawback is bound up with sufficient loss of energy due to flow resistance inthe connecting port between prechamber and chamber space. The mentioned loss is also related with the fact that the entire amount of fuel involved the in carburetion and combustion process is forwarded into the prechamber. Applying a pre-combustion pilot-flame ignition to get rid of described drawback and will combine advantages of divided and nondivided combustion chambers.

Статья поступила 21.04.2008г

ДИЗЕЛЬНЫЙ ДВИГАТЕЛЬ — ПРИНЦИП РАБОТЫ.

На первый взгляд дизельный двигатель почти не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. В карбюраторных и обычных инжекторных двигателях приготовление смеси происходит не в цилиндре, а во впускном тракте. В бензиновых двигателях с непосредственным впрыском смесь образуется так же как и в дизелях- непосредственно в цилиндре. В бензиновом моторе топливо-воздушная смесь в цилиндре воспламеняется в нужный момент от искрового разряда. В дизеле же топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре.
Рабочий процесс в дизеле происходит следущим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия (16-24:1) разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля. Такая организация рабочего процесса позволяет использовать более дешевое топливо и работать на очень бедных смесях, что определяет более высокую экономичность. Дизель имеет больший КПД (у дизеля – 35–45%, у бензинового – 25–35%) и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска. Но описанные недостатки относятся в основном к старым конструкциям, а в современных эти проблемы уже не являются столь очевидными.
КОНСТРУКЦИЯ.

Как уже отмечалось, конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако аналогичные детали у дизеля существенно усилены, чтобы воспринимать более высокие нагрузки — ведь степень сжатия у него намного выше (16-24 единиц против 9-11 у бензинового). Характерная деталь в конструкции дизелей — это поршень. Форма днища поршней у дизелей определяется типом камеры сгорания, поэтому по форме легко определить, какому двигателю принадлежит данный поршень. Во многих случаях днище поршня содержит в себе камеру сгорания. Днища поршней находятся выше верхней плоскости блока цилиндров, когда поршень находится в верхней точке своего хода. Так как воспламенение рабочей смеси осуществляется от сжатия, в дизелях отсутствует система зажигания, хотя свечи могут применяться и на дизеле. Но это не свечи зажигания, а свечи накаливания, которые предназначены для подогрева воздуха в камере сгорания при холодном пуске двигателя.
Поршни и свечи дизеля
Технические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от типа камеры сгорания и системы впрыскивания топлива.

ТИПЫ КАМЕР СГОРАНИЯ.

Форма камеры сгорания значительно влияет на качество процесса смесеобразования, а значит и на мощность и шумность работы двигателя. Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные.
Несколько лет назад на рынке легкового машиностроения доминировали дизели с разделенными камерами сгорания. Впрыск топлива в этом случае осуществляется не в надпоршневое пространство, а в специальную камеру сгорания, выполненную в головке блока цилиндров. При этом различают два процесса смесеобразования: предкамерный (его еще называют форкамерным) и вихрекамерный.
Камеры сгорания дизелей
При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью.
Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Впрыснутое в определенный момент топливо хорошо перемешивается с воздухом.
Таким образом, при разделенной камере сгорания происходит как бы двухступенчатое сгорание топлива. Это снижает нагрузку на поршневую группу, а также делает звук работы двигателя более мягким. Недостатком дизельных двигателей с разделенной камерой сгорания являются: увеличение расхода топлива вследствие потерь из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.
Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня. До недавнего времени непосредственный впрыск использовался на низкооборотистых дизелях большого объема (проще говоря, на грузовиках). Хотя такие двигатели экономичнее моторов с разделенными камерами сгорания, их применение на небольших дизелях сдерживалось трудностями организации процесса сгорания, а также повышенными шумом и вибрацией, особенно в режиме разгона.
Сейчас благодаря повсеместному внедрению электронного управления процессом дозирования топлива удалось оптимизировать процесс сгорания топливной смеси в дизеле с неразделенной камерой сгорания и существенно снизить шумность. Новые дизельные двигатели разрабатываются только с непосредственным впрыском.

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания дизеля.

Топливный насос высокого давления (ТНВД), принимая горючее из бака от подкачивающего насоса (низкого давления), в требуемой последовательности поочередно нагнетает нужные порции солярки в индивидуальную магистраль гидромеханической форсунки каждого цилиндра. Такие форсунки открываются исключительно под воздействием высокого давления в топливной магистрали и закрываются при его снижении.
Существует два типа ТНВД: рядные многоплунжерные и распределительного типа. Рядный ТНВД состоит из отдельных секций по числу цилиндров дизеля, каждая из которых имеет гильзу и входящий в нее плунжер, который приводится в движение кулачковым валом, получающим вращение от двигателя. Секции таких механизмов расположены, как правило, в ряд, отсюда и название — рядные ТНВД. Рядные насосы в настоящее время практически не применяются ввиду того, что они не могут обеспечить выполнение современных требований по экологии и шумности. Кроме того, давление впрыска таких насосов зависит от оборотов коленвала.
Распределительные ТНВД создают значительно более высокое давление впрыска топлива, нежели насосы рядные, и обеспечивают выполнение действующих нормативов, регламентирующих токсичность выхлопа. Этот механизм поддерживает нужное давление в системе в зависимости от режима работы двигателя. В распределительных ТНВД система нагнетания имеет один плунжер-распределитель, совершающий поступательное движение для нагнетания топлива и вращательное для распределения топлива по форсункам.

Эти насосы компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах. В то же время они предъявляют очень высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах очень малы.
Ужесточение в начале 90-х законодательных экологических требований, предъявляемых к дизелям, заставило моторостроителей интенсивно совершенствовать топливоподачу. Сразу же стало ясно, что с устаревшей механической системой питания эту задачу не решить. Традиционные механические системы впрыска топлива имеют существенный недостаток: давление впрыска зависит от частоты вращения двигателя и нагрузочного режима. Это значит, что при низкой нагрузке давление впрыска падает, в результате топливо при впрыске плохо распыляется, попадая в камеру сгорания слишком крупными каплями, которые оседают на ее внутренних поверхностях. Из-за этого уменьшается КПД сгорания топлива и повышается уровень токсичности отработанных газов.
Кардинально изменить ситуацию могла только оптимизация процесса горения топливо — воздушной смеси. Для чего надо заставить весь её объём воспламениться в максимально короткое время. А здесь необходима высокая точность дозы и точность момента впрыскивания. Сделать это можно, только подняв давление впрыска топлива и применив электронное управление процессом топливоподачи. Дело в том, что чем выше давление впрыска, тем лучше качество его распыления, а соответственно – и смешивания с воздухом. В конечном итоге это способствует более полному сгоранию топливо-воздушной смеси, а значит и уменьшению вредных веществ в выхлопе. Хорошо, спросите вы, а почему бы не сделать такое же повышенное давление в обычном ТНВД и всей этой системе? Увы, не получится. Потому что есть такое понятие, как «волновое гидравлическое давление». При любом изменении расхода топлива в трубопроводах от ТНВД к форсункам возникают волны давления, «бегающие» по топливопроводу. И чем сильнее давление, тем сильнее эти волны. И если далее повышать давление, то в какой-то момент может произойти обыкновенное разрушение трубопроводов. Ну, а о точности дозирования механической системы впрыска даже и говорить не приходится.
Насос-форсунка
В результате были разработаны два новых типа систем питания – в первом форсунку и плунжерный насос объединили в один узел (насос-форсунка), а в другом ТНВД начал работать на общую топливную магистраль (Common Rail), из которой топливо поступает на электромагнитные (или пьезоэлектрические) форсунки и впрыскивается по команде электронного блока управления. Но с принятием Евро 3 и 4 и этого оказалось мало, и в выхлопные системы дизелей внедрили сажевые фильтры и катализаторы.
Насос-форсунка устанавливается в головку блока двигателя для каждого цилиндра. Она приводится в действие от кулачка распределительного вала с помощью толкателя. Магистрали подачи и слива топлива выполнены в виде каналов в головке блока. За счет этого насос-форсунка может развить давление до 2200 бар. Дозированием топлива, сжатого до такой степени и управлением угла опережения впрыска занимается электронный блок управления, выдавая сигналы на запорные электромагнитные или пьезоэлектрические клапаны насос-форсунок. Насос-форсунки могут работать в многоимпульсном режиме (2-4 впрыска за цикл). Это позволяет произвести предварительный впрыск перед основным, подавая в цилиндр сначала небольшую порцию топлива, что смягчает работу мотора и снижает токсичность выхлопа. Недостаток насос-форсунок – зависимость давления впрыска от оборотов двигателя и высокая стоимость данной технологии.

Система Common Rail.

Система питания Common Rail используется в дизелях серийных моделей с 1997 года. Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска. Система Common Rail состоит из резервуара – аккумулятора высокого давления (иногда его называют рампой), топливного насоса, электронного блока управления (ЭБУ) и комплекта форсунок, соединенных с рампой. В рампе блок управления поддерживает, меняя производительность насоса, постоянное давление на уровне 1600-2000 бар при различных режимах работы двигателя и при любой последовательности впрыска по цилиндрам. Открытием-закрытием форсунок управляет ЭБУ, который рассчитывает оптимальный момент и длительность впрыска, на основании данных целого ряда датчиков – положения педали акселератора, давления в топливной рампе, температурного режима двигателя, его нагрузки и т. п. Форсунки могуть быть электромагнитными, либо более современными- пьезоэлектрическими. Главные преимущества пьезоэлектрических форсунок — высокая скорость срабатывания и точность дозирования. Форсунки в дизелях c Common rail могут работать в многоимпульсном режиме: в ходе одного цикла топливо впрыскивается несколько раз – от двух до семи. Сначала поступает крохотная, всего около милиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля — двигателя с воспламенением топлива от сжатия — это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно, снижается количество вредных компонентов в выхлопе. Многократная подача топлива за один такт попутно обеспечивает снижение температуры в камере сгорания, что приводит к уменьшению образования окиси азота- одной из наиболее токсичных составляющих выхлопных газов дизеля. Характеристики двигателя с Common Rail во многом зависят от давления впрыска. В системах третьего поколения оно составляет 2000 бар. В ближайшее время в серию будет запущено четвертое поколение Common Rail с давлением впрыска 2500 бар.

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала — «турбоямы». Отсутствие дроссельной заслонки в дизеле позволяет обеспечить эффективное наполнение цилиндров на всех оборотах без применения сложной схемы управления турбокомпрессором. На многих автомобилях устанавливается промежуточный охладитель наддуваемого воздуха — интеркулер, позволяющий поднять массовое наполнение цилиндров и на 15-20 % увеличить мощность. Наддув позволяет добиться одинаковой мощности с атмосферным мотором при меньшем рабочем объеме, а значит, снизить массу двигателя. Турбонаддув, помимо всего прочего, служит для автомобиля средством повышения «высотности» двигателя — в высокогорных районах, где атмосферному дизелю не хватает воздуха, наддув оптимизирует сгорание и позволяет уменьшить жесткость работы и потерю мощности. В то же время турбодизель имеет и некоторые недостатки, связанные в основном с надежностью работы турбокомпрессора. Так, ресурс турбокомпрессора существенно меньше ресурса двигателя. Турбокомпрессор предъявляет жесткие требования к качеству моторного масла. Неисправный агрегат может полностью вывести из строя сам двигатель. Кроме того, собственный ресурс турбодизеля несколько ниже такого же атмосферного дизеля из-за большой степени форсирования. Такие двигатели имеют повышенную температуру газов в камере сгорания, и чтобы добиться надежной работы поршня, его приходится охлаждать маслом, подаваемым снизу через специальные форсунки.
Прогресс дизельных двигателей сегодня преследует две основные цели: увеличение мощности и уменьшение токсичности. Поэтому все современные легковые дизели имеют турбонаддув (самый эффективный способ увеличения мощности) и Соmmоn Rail.

Форкамеры

Закисание гайки форкамеры 601 головки

Уважаемый посетитель! Мы физически не можем отвечать на каждый комментарий..
Для того, чтобы Вы могли самостоятельно (или с помощью ближайшего автосервиса) устранить неисправности дизеля, мы разработали ОнлайнДиагностику. Это интерактивное руководство, которое содержит все известные причины неисправностей дизельных двигателей и указывает пути достижения правильной работы конкретного двигателя.

Приглашаем вас воспользоваться ОнлайнДиагностикой прямо сейчас!

Оставить комментарий:

Подписаться на комментарии

Придет время, когда ты решишь, что все кончено. Это и будет начало.

© 2005—2023 СТО «КОВШ»® г. Херсон
Обслуживание дизелей и топливной аппаратуры
Разработка сайта — web-студия «Ковш»
Онлайн: Зарегистрированных: 0, Гостей: 152

Уникальных
посетителей
за сегодня:
за вчера:
всего:
Максимум за день:
Максимум посещений:
2313
7762
9252532
7762
22.12.2023

Форкамера

форкамера

Форкамера — это специальная полость в головке блока цилиндров двигателя внутреннего сгорания. Полость форкамеры сообщается с основной полостью камеры сгорания через один или более каналов. Бензиновый и дизельный двигатель могут быть форкамерными, то есть предкамерными.

Форкамера

Как мы уже описали выше, форкамерный двигатель имеет следующий принцип действия в работе:

форкамера

  • в предкамерную полость подается топливно-воздушная смесь;
  • смесь частично воспламеняется;
  • по мере сгорания смеси, давление в форкамере увеличивается;
  • из-за создающегося давления, пары и газы сгоревшей смесь выталкиваются в рабочую полость цилиндров над поршнями. Форкамера имеет объем 30% от основного объема рабочей полости камеры сгорания. Смысл применения данной конструкции в ДВС в том, чтобы улучшить наполнение цилиндров и улучшить качество образования смеси.

Главный плюс двигателя с форкамерой — это низкие ударные нагрузки деталей цилиндро-поршневой группы во время работы ДВС. Это обеспечивается, как раз таки, за счет плавного нарастания давления, а не скачками.

К тому же, форкамерные двигатели качественно сжигают топливо, уменьшают количество выброса вредных веществ, уменьшают расход топлива и повышают КПД силового агрегата.

Что такое и как работает система форкамерно-факельного зажигания

Если есть форкамера в моторе, значит уже понятно, что есть основная камера сгорания топлива, а есть еще дополнительная.

форкамера

Во впускном коллекторе и головке блока цилиндров есть специальный канал. Такой двигатель с форкамерой устанавливают, например, на не некоторые модели автомобилей Газа «Волга». В предкамеру подается переобогащенная смесь, которая создается в отдельной камере карбюратора. В форкамере есть еще впускной клапан. Далее свеча зажигания вырабатывает искру и происходит поджиг топливно-воздушной смеси в предкамере. После этого распределительный вал открывает впускной клапан основной камеры, после чего в основную камеру поступает уже обедненная смесь.

Полости форкамеры и основной камеры сгорания сообщаются специальными соплами — каналами. Через них в основную камеру попадает пламя, пары и газы уже успевшей сгореть части воздушно-топливной смеси. В результате этого обедненная смесь в основной камере воспламеняется.

Таким образом, форкамера — это подвпрыск, который по принципу действия похож на принцип двухступенчатой работы новых дизельных инжекторных форсунок.

Плюсы и минусы предкамерных агрегатов

С одной стороны, изменение конструкции двигателя с внедрением форкамеры не нашли широкого применения из-за значительного усложнения конструкции двигателя.

Хотя экологичность таких двигателей была выше, да и расход топлива меньше, они имели меньший ресурс эксплуатации, чем обычные ДВС.

Для дизельного двигателя форкамера подходит лучше. Она снижаем сильную задымленность из выхлопной трубы. К тому же форкамерные дизели способны работать на некачественном дизельном топливе.

Основной минус форкамерных двигателей — это трудный запуск мотора на холодную. Если нагревать предкамеру, то такой двигатель заводится без проблем.

Видео

ГБЦ форкамерных двигателей.

Форкамера Мерседес ОМ 601-603.

Как заменить форкамеры.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *