Что такое якорь в электродвигателе
Перейти к содержимому

Что такое якорь в электродвигателе

  • автор:

ЯКОРЬ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ

основная часть машины, несущая на себе обмотку, в к-рой при работе машины в качестве генератора (см. Генератор электрический) индуктируется электродвижущая сила, а при работе ее в качестве мотора (см. Электродвигатель) циркулирует ток от сети.

статор) и укрепляется обычно в станине машины.» />

Взаимодействие к-рого с магнитным полем машины вызывает ее вращение. В машинах постоянного тока и в коллекторных моторах переменного тока якорь является вращающейся частью машины (ротором) и представляет собой барабан, собранный с целью уменьшения вредного действия вихревых токов из отдельных железных листов толщиной примерно 0,5 мм, разделенных между собой тонкой бумагой или покрытых лаком для изоляции друг от друга; в продольных пазах на боковой поверхности барабана укладывается обмотка. В большинстве современных машин переменного тока якорь неподвижен (статор) и укрепляется обычно в станине машины.

Технический железнодорожный словарь. — М.: Государственное транспортное железнодорожное издательство . Н. Н. Васильев, О. Н. Исаакян, Н. О. Рогинский, Я. Б. Смолянский, В. А. Сокович, Т. С. Хачатуров. 1941 .

  • ЯДРО НАСЫПИ
  • ЯНУШЕВСКОГО ВКЛАДЫШ

О происхождении терминов «якорь» и «ротор»

О происхождении терминов

Электротехнический термин «якорь» намного старше слова электротехника. В эпоху великих географических открытий и развития мореплавания в мировом океане ощущалась острая потребность в магнитных компасах, основной частью которых была магнитная стрелка. Эти стрелки изготавливались из железа и намагничивались природными магнитами. Других попросту не было.

Для хорошего намагничивания требовались и хорошие магниты. Для усиления действия природных магнитов их армировали железом, прикрепляя его к камню с помощью немагнитных оправ из меди, серебра и даже золота. Все это украшалось стилизованными фигурками, орнаментами или надписями.

Магниты стоили дорого. В комплект магнита входил также съемный железный брусочек, который «прилепливался» к полюсам магнита. Этот брусочек имел с одной стороны кольцо, крючок или декоративную копию морского якоря для подвешивания гиревой чашки. Силу удержания этого брусочка магнитом всегда можно было измерить по весу гирь, укладываемых в чашку. Сам же брусочек с крючком и получил название «якорь магнита».

С изобретением в 1825 г. электромагнитов способ измерения их силы не изменился. Так, например, в преамбуле своего труда, вышедшего в 1838 г. в Петербурге под названием «О притяжении электромагнитов», российские академики Б.С. Якоби и Э.Х. Ленц прямо так и записали: «Сила притяжения определялась весом гирь, которые накладывались до тех пор, пока якорь не отрывался».

Электромагниты уже могли создавать мощные магнитные поля. Американский ученый Дж. Генри создал электромагнит, якорь которого был в состоянии удерживать груз весом в тонну. Но не в этом его главная заслуга как инженера. Он поставил якорь электромагнита на шарнир и заставил при притяжении ударять по колокольчику. Так появился первый электромагнитный звонок.

Приспособив контакты к подвижному якорю, американец получил никому доселе неизвестный прибор — реле, устройство для автоматической коммутации электрических цепей по сигналу извне, позволяющее передавать телеграфные сигналы на практически любые расстояния.

В современных электромагнитных реле подвижная часть магнитопровода и до сего времени называется якорем, хотя и не имеет никакого внешнего сходства с удерживающим устройством корабля на рейде.

Изобретательская мысль Дж. Генри на этом не остановилась. Он сделал магнитопровод с катушкой и установил его горизонтально, как коромысло лабораторных аналитических весов. При качаниях устройства (якоря), контакты, укрепленные на концах коромысла, периодически касались выводов двух гальванических элементов, запитывавших катушку токами различного направления. Соответственно, коромысло, качаясь, притягивалось к двум постоянным магнитам, входившим в систему.

Установка работала непрерывно, сообщая якорю 75 качаний в минуту. Так появилась одна из первых конструкций электродвигателя с возвратно-поступательным движением. Впрочем, превратить его во вращательное для того времени не составляло никакого труда.

Генри писал: «Мне удалось привести в движение небольшую машину силой, которая до сих пор не находила применения в механике, я говорю о магнитном притяжении. Я не придаю большого значения этому изобретению, ибо в теперешнем его виде оно представляет только физическую игрушку. Однако не исключена возможность, что при дальнейшем развитии принципа это сможет быть использовано для практических целей».

Машины с возвратно-поступательным движением тогда распространения не получили, хотя были предложены вполне работоспособные конструкции У. Кларком, Ч. Пейджем и др. Технологически более удобным в применении оказался электродвигатель с вращающимся якорем.

Затем наступила эра трехфазного переменного тока. Никто вращающиеся узлы у двигателей переменного тока якорем не называл, и это было справедливо. Как не назвать вращающееся магнитное поле вихрем, а вращающуюся часть ротором? Но в машинах постоянного тока (и в двигателях, и в генераторах) терминология осталась прежней. Якорь вращается, а полюсной наконечник называется башмаком, слово, которое можно встретить сейчас только в сказках XVIII в.

Может, стоит изменить технологию? Не будем спешить. Сейчас получают распространение многофазные линейные электродвигатели для монорельсовых поездов. Здесь в качестве ротора используется намертво укрепленный монорельс, а в качестве статора (от латинского — стоящий неподвижно) используются обмотки, установленные на магнитопроводе стремительно мчащегося электровоза. Да и надо ли менять установившиеся понятия, рискуя внести еще большую путаницу?

  • Что такое герконы, как они устроены и работают
  • Энергосбережение необходимо и в воздухе
  • Чудеса электричества: переменный и постоянный ток в индустрии красоты

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Интересные факты, Научные статьи

Подписывайтесь на наш канал в Telegram: Домашняя электрика

Электродвигатель постоянного тока. Принцип действия и устройство.

www.motors33.ru

На рис. 1-1 представлена простейший электродвигатель постоянного тока, а на рис. 1-2 дано его схематическое изображение в осевом направлении. Неподвижная часть двигателя, называемая индуктор, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в электродвигателе основного магнитного потока. Индуктор изображенной на рис. 1-1 имеет два полюса 1 (ярмо индуктора на рис. 1-1 не показано).
Вращающаяся часть электродвигателя состоит из укрепленных на валу цилиндрического якоря 2 и коллектора. 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанном на рис. 1-1 и 1-2 простейшем электродвигателе имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.
Основной магнитный поток в нормальных электродвигателях постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.

Рис. 1-1. Простейший электродвигатель постоянного тока
Рис. 1-2. Работа простейшего электродвигателя постоянного тока в режиме генератора (а) и двигателя (б).

Генератор постоянного тока.

Рассмотрим сначала работу электродвигателя в режиме генератора.

Предположим, что якорь электродвигателя (рис. 1-1 и 1-2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется Э. Д. С., направление которой может быть определено по «правилу правой руки» и показано на рис. 1-1 и 1-2, а. Поскольку поток полюсов предполагается неизменным, то эта Э. Д. С. индуктируется только вследствие вращения якоря и называется Э. Д. С. вращения. В обоих проводниках вследствие симметрии индуктируются одинаковые Э. Д. С., которые по контуру витка складываются. Частота Э. Д. С. f в двухполюсном электродвигателе равна скорости вращения якоря n, выраженной в оборотах в секунду:
f = n,
а в общем случае, когда машина имеет р пар полюсов с чередующейся полярностью:
f = pn

Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.

Двигатель постоянного тока.

Рассматриваемая простейшая машина может работать также двигателем, если к обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы и возникнет электромагнитный момент. Величины силы и момента определяются как и для генератора. При достаточной величине Мэм якорь электродвигателя придет во вращение и будет развивать механическую мощность. Момент Мэм при этом является движущим и действует в направлении вращения.
Если мы желаем, чтобы при той же полярности полюсов направления вращения генератора (рис. 1-2, а) и двигателя (рис. 1-2, б) были одинаковы, то направление действия а следовательно, и направление тока у двигателя должны быть обратными по сравнению с генератором (рис. 1-2, б).
В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве механического инвертора тока.
Принцип обратимости. Из изложенного выше следует, что каждый электродвигателя постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.
Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно, при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.
Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.
Аналогичным образом может происходить изменение режима работы также в электродвигателях переменного тока.

Еженедельные отправки по всей России:

Балашиха, Подольск, Химки, Королёв, Мытищи, Люберцы, Красногорск, Электросталь, Коломна, Одинцово, Домодедово, Серпухов, Щёлково, Орехово-Зуево, Раменское, Долгопрудный, Жуковский, Пушкино, Сергиев Посад, Реутов, Ногинск, Ростов-на-Дону, Таганрог, Шахты, Волгодонск, Новочеркасск, Батайск, Новошахтинск, Уфа, Стерлитамак, Салават, Нефтекамск, Октябрьский, Ставрополь, Пятигорск, Кисловодск, Невинномысск, Ессентуки, Челябинск, Магнитогорск, Златоуст, Миасс, Копейск, Махачкала, Хасавюрт, Дербент, Каспийск, Казань, Набережные Челны, Нижнекамск, Альметьевск, Краснодар, Сочи, Новороссийск, Армавир, Владивосток, Уссурийск, Находка, Артём, Самара, Тольятти, Сызрань, Новокуйбышевск, Екатеринбург, Нижний Тагил, Каменск-Уральский, Первоуральск, Симферополь, Керчь, Евпатория, Сургут, Нижневартовск, Нефтеюганск, Красноярск, Норильск, Ачинск, Барнаул, Бийск, Рубцовск, Ковров, Муром, Волгоград, Волжский, Камышин, Иркутск, Братск, Ангарск, Новокузнецк, Кемерово, Прокопьевск, Нижний Новгород, Дзержинск, Арзамас, Саратов, Энгельс, Балаково, Чебоксары, Новочебоксарск, Новый Уренгой, Ноябрьск, Пермь, Березники, Хабаровск, Комсомольск-на-Амуре, Архангельск, Северодвинск, Белгород, Старый Оскол, Череповец, Вологда, Калуга, Обнинск, Курск, Железногорск, Липецк, Елец, Новосибирск, Бердск, Оренбург, Орск, Томск, Северск, Тула, Новомосковск, Ульяновск, Димитровград, Ярославль, Рыбинск, Майкоп, Улан-Удэ, Назрань, Нальчик, Элиста, Черкесск, Петрозаводск, Сыктывкар, Йошкар-Ола, Саранск, Владикавказ, Кызыл,Ижевск,Абакан, Грозный, Якутск, Чита, Петропавловск-Камчатский, Благовещенск, Астрахань, Брянск, Воронеж, Иваново, Калининград, Киров, Кострома, Курган, Санкт-Петербург, Мурманск, Великий Новгород, Омск, Орёл, Пенза, Москва, Севастополь, Севастополь, Псков, Рязань, Южно-Сахалинск, Смоленск, Тамбов, Тверь, Тюмень

Якоря для электродвигателя постоянного тока

Якорьэлектродвигателя состоит из вала на котором установлен коллектор, пакет электротехнического железа, катушки якоря. Катушки уложены в пазы пакета железа , свободные не изолированные концы катушек приварены к пластинам коллектора, на лобную часть катушек и на ту часть с которой приварены катушки наложена бандажная лента.

Тип электродвигателя Мощность кВт Якорь электродвигателя руб / шт
Д-808Б 90 +
ДЭ (В)-812 100 , 120 +
ДЭ (В)-814 155 +
ДЭ (В)-816 190 , 225 +
ДЭ (В)-816 200 , 220 +
ДЭ (В)-816 150 +
ДЭ (В)-818 270 +
ДПЭ (В)-82 175 +
ДПЭ (В)-82А 190 +
ДПЭ-52 54 +
ДПВ-52 50 , 60 +
GGFB 75/550 75 +
4П 225S +
4П 225М +
4П 250S +
4П 250М +
4П 280S +
4П 280М +
4П 280L +
ДРТ-13М 14,6 +
ДРК-27 27/19,6 +
ДТН-33, ДРТ-33 33 +
ДТН-46 +
ДТН-45 45 +
ДТ-51 36 +
ДТ-53 50 +
ЭТ-31 31 +
ЭТ-46 45 +

Узел токосъема

Узел токосъема на электродвигателе предназначен для осуществления скользящего контакта между электрощетками и поверхностью коллектора или токосъемных колец.

Узлы токосъема комплектуются:
— щеткодержателями серии ДРПр1, ДП, ДРПк1, ДПГ, ДРПра, ДГ, ДГМ, ДРПр2, ДТрПс2, ДТнПк, ДПс1, РТП, ДРПс, ДРПч, ДППр2, ДРПк2
— щетками (материал изготовленияЭГ, МГ, БДХ, МГС, МГО, МГ, EG ( производитель: Morgan Carbon) — траверсами или бракетами их изготавливают из металла или карболита.

Для осуществления заказа на узлы токосъема необходимо предоставить информацию:
1.Тип электродвигателя
2. Параметры электродвигателя
3. Количество и марку щеткодержателей
4. По возможности фото или чертежи
5. Точное количество

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *